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WAVE PROPAGATION IN DAMAGED SOLIDS

D. GROSS and CH. ZHANGt
Institute of Mechanics. TH Darmstadt. Germany

Abstract-In this paper. a theoretical model is presented for investigating elastic wave propagation
in damaged solids. This modd is suited for damaged solids with dilutely distributed defects. and it
may aid in the design of experimental configurations and in the proper interpretation of measured
data from ultrasonic non-destructive evaluation (NOEl for detecting and characterizing the damage
states of the solid. The problem of wave scattering by a single defect of arbitrary shape is first
formulated as a set of boundary integral equations. whose solution yields the unknown quantities
on the boundary of the defect. The scattering cross-section is then introduced as a measure of the
overall effects of the defect on the energy withdrawal from the incident w'lve. The damaged solid is
approximated by an equivalent effective medium which is thought of as statistically homogeneous
and linearly viscoelastic. By introducing a complex wave number. neglecting interaction effects
among individual defects. and using energy considerations. a simple equation is obtained for
calculating the attenu,ltion coefficient from the avemge scattering cross-section and the numher
density of the defects. Kramers-Kronig relations are subsequently applied to compute the etTective
wave (ph,lse) velocity from which the group velocity can he immediately calculated. A method for
finding the dyn,lmie etfcctive stiffness of the damagl.-d solid from the attenuation coelTicient and the
effective wave velllcity is proposed. Numerical results arc presented for a damagl.-d solid permeated
by a distribution of completely f<lnd,'mly oriented penny-shaped microcmcks.

l. INTRODUCTION

Wave propagation in a damaged solid. unlike in an ideally perfect solid. is generally
accompanied by attertlwtion and dispersion. Attenuation refers to the diminishing of wave
intensity or Wave amplitude as a wave propitgates through a damaged medium. while
dispersion refers to the shape distortion of a wave due to the frequency dependence of
the ctfective wave (phase) velocity. Both attenuittion and phase velocity are measurable
quantities. and the amount ofchange in the attenuation and phase velocity can be correlated
to the level of damage states. This feature has been advantageously exploited in ultrasonic
nondestructive evaluation (NDE) relying on wave propagation in solids. which provides
un ideal means for detecting and charach.:rizing flaws in u dam'lged solid. Techniques
utilizing ultrasonic waves are especially appe.ding because of the direct connection between
the characteristics of the wavc propagation and the damage states ofa solid (e.g. Achenbach.
1990). This paper aims at providing a theoretical model which may aid in the design of
experimental configurations .ltld in the proper interpretation of measured data.

There are many factors affecting wave attenuation and dispersion. such as spreading
of a wave beam. scattcring. absorption due to various mechanisms and mode conversion
resulting in partitioning of the energy among two or more wave modes each traveling at its
own velocity. The present analysis only considers the scattering effects of distributed
damages. since scattering is ,1 common cause of attenuation of acoustic energy. During the
scattering processes. part of the incident wave energy is converted into the energy of
scattered waves. Conscqucntly. it perfectly clastic and damaged solid is seen by an incident
wave as an attenuative and dispersive medium. despite the conservative nature of the entire
systcm and its constituents. It is not easy to define precisely the terminology "damage". In
this paper. "damage" is defined as a collection of micro-heterogeneities whose presence
gives rise to changes of the overall materia! properties. such as stiffness. strength and
anisotropy. This definition may be misleading in the case of stiffer inhomogeneities such as
in particle-reinforced composites. Here. a stiffening effect emerges which is desirable from
the engineering point of view. Even in this case. the inhomogeneities are regarded as
"damage". since their presence will change the material properties and thus the wave
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propagation characteristics (attenuation and phase velocity). In a real situation. scattering
by the material microstructure such as grain boundaries and second phase particles may
also have strong influence on wave attenuation and dispersion. In this analysis. this con­
tribution is ignored by assuming that the wave length and the characteristic dimensions
of the defects are sufficiently larger than the characteristic dimensions of the material
microstructure.

An extensive literature exists on wave propagation in multi-phase materials. especially
in particulate composites (e.g. Mal and Knopoff. 1967; McCoy. 1973; Bose and Mal. 1974:
Kuster and Toksoz. 1974: Kinra et a/.. 1976: Varadan and Varadan. 1979: Sayers. 1980:
Kinra and Anaud. 1982; Sayers and Smith. 1983: Datta et al.. 1988; Ledbetter and Datta.
1986; Sabina and Willis. 1988) and in voided materials (e.g. Varadan et al.• 1978; Sayers.
1981; Sayers and Smith. 1981; Gubernatis and Domany. 1984; Varadan et al.. 1985;
Lewandowski. 1987a.b; Stigh. 1987). It is not the goal of this paper to give a comprehensive
review on this subject. and for detail we refer to the above-mentioned works and references
cited therein. There are also several investigations on wave propagation in solids containing
cracks (e.g. Anderson et a/.. 1974; O'Connell and Budiansky. 1974; Piau. 1979. 1980;
Chatterjee et al.. 1980; Hudson. 1981. 1986; McCarthy and Carroll. 1984; Zhang and
Achenbach. 1991). Most of these investigations used either the formalism of Foldy (1949)
or the quasicrystalline approximation of Lax (1952). Also. most works were restricted to
Rayleigh regime where the wave length is considerably larger than the characteristic dimen­
sion of the defects. or to the diffusive regime for the opposite case. Few works have been
devoted to the stochastic regime where the wave length and the characteristic dimensions
of the defect arc of the same order. As a consequence of the Rayleigh or low-frequency
approximation the phase velocity docs not exhibit frequency dependence. and it docs not
correctly describe the dispersion behavior of the wave. Kramers-Kronig relations have
been successfully applied by Bdtzer and co-workers for studying wave attenuation and
dispersion in particle-reinforced composites. and the essential results have been reviewed
by Beltzer (1988. 1989). This causal approach has been recently extended to surface-crack
problems by Zhang and Achenbach (1990). to solids containing parallel anti-plane cracks
by Angel and Achenbach (1990). and to randomly and non-randomly cracked 2- or 3-0
solids by Zhang and Gross (199Ia). The essential advantage of this approach is that it
puts no limitations on frequency. <lt1d it requires only a few parameters describing the
statistical distribution and orientation of the microdefects. In this paper. this approach is
further extended to damaged solids with dilutely distributed defects of arbitrary shapes.
The procedure for calculating the attenuation codTicient and the phase velocity is essentially
the same as in our previous works (e.g. Zhang and Gross. 199Ia). In the present analysis.
however. the group velocity is also computed. and a method for finding the dynamic
ctfective stiffness of the damaged solid is proposed. As an example. numerical results arc
presented for a damaged solid permeated by a distribution ofcompletely randomly oriented
penny-shaped microcracks.

2. SCATTERING CROSS-SECTION Of A SINGLE DEfEe.

We consider an infinite. homogeneous. isotropic and linearly elastic solid containing
a volumetric defect of arbitrary shape as shown in Fig. Ia. The defect is assumed to be also
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Fig. I. (a) Volumctric dcfect. (h) Crack.



Wave propagation in damaged solids 1765

homogeneous. isotropic. and linearly elastic. and it occupies the domain VD inside a
sufficiently regular. bounded. and closed surface S. The material constants of the defect are
characterized by pO. ;.0 and Jl o• while p. ;. and Jl represent the corresponding material
constants of the matrix. Here. a defect is defined. though not precisely. as an inhomogeneity
whose material constants differ from those of the matrix. and whose presence will disturb
wave propagation in the matrix material. Depending on the relative stiffness of the defect
to that of the matrix. the defect can be used to model the fibers in a particle-reinforced
composite. the localized damaged zone in an otherwise perfect material. or a void. A crack
is also contained as a limit-case. Although interface flaws such as interface cracks. interface
debonding. interface sliding and interface layer (interphase) could be present in a real
situation (e.g. Aboudi. 1988; Datta et al.• 1988). it is assumed here that a perfect bonding
between the matrix and the inhomogeneity prevails. Interface flaws can be easily taken into
account in the formulation. As an incident wave impinges on the defect. scattered waves
are generated. The total wave field in V Yo can be written as a sum of the incident wave field
and the scattered wave field:

Uj = u:"+u;". all = a:'+aij. (I)

The incident wave field. u;" and a:,. is defined as the wave field that would be present if the
defect were absent. The scattered wave field. II;" 'lnd aij. is induced by the interaction of
the incident wave with the defect. The incident wave field is defined in the entire space
V = Vo + V",. while the scattered wave field is only detined in V". The solid is assumed to
be in time-harmonic motion. but the common term e -;'''' is suppressed throughout the
analysis. where w is the angular frequency. Both the total wave field and the partial wave
lIe1ds satisfy the equations of motion

a"" +pW ~ II, = O.

the linear kinematic equation

thc Hookc's Llw

and the boundary (continuity) conditions

1I,Il(X) = II,(X). XES.

(2)

(3)

(4)

(5)

(6)

Hcre and in the following. the superscript 0 dcsignatcs quantities in Vo• and n, denotes the
components of the unit normal vector of S pointing into the interior of V",. For isotropic
solids. E"kl can be written as

(7)

where J,j represents the Kronecker delta. Replacing the material constants of the matrix by
the corresponding material constants of the defect. similar equations like (2)-(4) can be
written for the displacement and the stress field in VD. i.e. Ujo and ag. However. these
equations arc not given here for the sake of brevity.

While the boundary conditions (5) and (6) are generally valid. some modifications
have to be made for certain limit-cases. For instance. the boundary conditions should read
for a rigid defect:
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for a vacant void:

and for a fluid-saturated void:
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U,(x) = const.. X EO 5: (8)

(9)

lI~(X) = lI,,(X). XES.

f~(x) =j~(x). /;'(X) =.rC\l = O. XES.

(10)

( II )

In eqns (10) and (II). 11 and (denote the normal and the tangential components of the
displ,lCements and the tractions. For a traction-free crack. the boundary conditions are

( 12)

where A = AI- + A· denotes the surface of the crack (sec Fig. Ib). In this analysis. the
incident wave fIeld is assumed to be known a priori. and the scattered wave field has to be
determined. which satisfies the radiation conditions at inllnity. By using the e1astodynamic
representation theorem. the wave lield in I'll and the scatlered wave liekl in V, can be
expressed as

U;I(\) = - f [1T;;,."(x; y)II,o(y) -lI;l'(x: ~·)IT;:(y)lfl, dS. XE I'll',. (D)

( 14)

where X and y denote the position vectors of the observation point and the source point,
and II~". IT;;,." and 1I;1, a;;k represent the displacement and the stress Green's functions of the
defect and the matrix, respectively.

Using eqns (13) and (14). taking the limit x ...... S, and considering the boundary
conditions (5) and (6). a system of coupled boundary integral equations (HIEs) can be
obtained as

llldx) = - l[(J";,'k'(X:Y)II'(Y)-II~"(X:Y)IT,/(Y)lflldS. XES. (15)

!lIdx) -u~n(x) = lra;;,<x;Y)lI,(y)-u:;{x;y)a,/y)]Il,dS. XES. (16)

where the integrals arc understood as Cauchy principal value integrals.
The boundary integral equations (15) and (16) arc valid for arbitrarily shaped defects.

Implications arise when the defect takes the form of a crack with vanishing thickness. In
this case. the usual displacement RIE formulation degenerates. and it is convenient to usc
the traction RI E formulation. For a three-dimensional crack of arbitrary shape, a non­
hypersingular BIE formulation leads to the following traction BIEs (e.g. Zhang and Gross.
1991b)

( 17)
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where e", is the permutation tensor, and .::\u; are the crack opening displacements. Also
here, the integrals are understood as Cauchy principal value integrals.

The boundary integral equations (15)-( 17) can be solved numerically by adopting the
boundary element method (BEM). Special care must be taken to account for the singularities
arising in the Green's functions. For crack problems, additional singularities occur at the
tips of the crack which should be modeled properly. Once the quantities on the boundary
of the defect have been calculated by solving eqns (15) and (16) (or eqn (17», the dis­
placement and the stress field at any internal point can be determined by using the respective
representation formulas for these quantities.

In this analysis, the incident wave is taken to be either a plane time-harmonic longi­
tudinal wave (L-wave) of the form

(18)

or a plane time-harmonic transverse wave (TV-wave) of the form

(19)

where tlj are the components of the wave propagation vector n, U} and UJ are the
amplitudes, and kL and k r are the W.lve numbers of the incident L- and TV-waves, respec­
tively. The presence of a defect gives rise to a perturbation of the intensity of the incident
wave, since a part of the energy of the incident wave is converted into the energy ofscattered
waves. To describe the effects of the defect on the energy withdrawal from the incident
wave, the scattering cross section}' is introduced as

(20)

where (P"') represents the time-averaged energy flow of scattered waves over a period
T = 2tr/w. and (I) denotes the time-averaged intensity of the incident wave. For an incident
plane time-harmonic L-wave defined by eqn (18) the time-averaged wave intensity is given
by

(21)

while for an incident plane time-harmonic TV-wave of the form (19) (I) is determined by

)
pw T T

(I) = ---U U •2k
T

k k • (22)

where asterisk stands for the complex conjugate. The time-averaged energy flow of the
scattered waves (P"') can be expressed as

(23)

If the defect is a crack. eqn (23) can be recast'into the following form:

(24)

The time-averaged energy flow (P"') describes the energy scattered in all directions and.
thus. lost by an incident wave at the expense of its interaction with the crack.
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The scattering cross-section :' is of particular importance to the present analysis. and
it is directly related to the attenuation coefficient. as will be shown in the following section.

~. DISTRI Bl'TED DEFECTS ,\:-; D .-\TTE:-;l'\TIO:-; COEFFICIE:\T

We consider now a distribution of microdefects embedded in a homogeneous. isotropic
and linearly elastic solid. as shown in Fig. 2a. Depending on the statistical distribution and
orientation of the dispersed microdefects. the overall behavior of the damaged solid may
exhibit macwscopic anisotropy or iSl'tropy. Wave propagation in such a heterogeneous
medium is vcry complex. and it is impractical. often also impossible. to study the local
events near individual defecb. Oftcn. it sulliccs to describe the overall average response of
the material. One approach fllr doing this is the so-called etli:ctive 111l:dillm approach. whil'h
has been extelbivcly used in the literature. Here. we will adopt this approach for analyzing
the dynamic hchavillr of the damaged solid. To he nwre specitic. let us consider a rep­
resentative volume clement (RYE) as shown in Fig. 2b. which is large enough compared
to the characteristic dimensions of the material microstrw.:ture including the mierodefects.
but small enough compared tIl the characteristic dimensions of the damaged solid. Wave
propagation in this heterogencllus RVE involvcs wave scattering due to the presence Ill' the
defects. which withdraws the cnergy nf the incident wave. Consequently. the wave intensity
decreases or attenuatcs. though the m~ltrix and the defects arc perfectly elastic and do not
dissipate energy. Also. the pn:sence Ill' the damage will change the etli:ctin: wave velocity.
which is now frequency dependent. Thesc two phenomcna. referred to as wave attcnuation
and dispersillil. arc vcry similar to tlwsc of wave propagation in a homogeneous and linearly
viscoclastic mcdium, Bccausc of this similarity. it is intuitive to replace the \lriginally
heterl1geneous R VI': hy ~ln l'quivaknt ctrcetive medium (EEM) which is tlwlIght of as
homogcnelllls and line"rly \iscoclastic (sl.:e hg, 2c), This procedure. orten terllwd "homll­
geni/ation" tl.:l.:hniq\ll.:. rl.:hl.:s on the "s.s\lmption that hoth thl.: originally damaged RVE and
the lIndamagl'd EEM shlluld havl.:. at kast approximatdy. the samc rcspnnse \lnder the
same dyn'lIl1il.: Illading conditions. III principk. we can lirst determine the dynamic etTcclivc
material I.:onstanls. and then calcuLtt<: thc corresponding wave propagatinn characteristics
(attcnuation and phase veillcity), I Ie 1'1.:. we follow an npposite way which appl.:ars to he
more elll1\l'nil'nt ,IS will he shown in thl' following.

. . - . ' ,... . . ,-, . - .- . ..,.... - ...._. . " ,
Xl 'D' ,'-
~

' _ -... - . -
-, ',," -',

:1.1 ,_ .Rn:••
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S +
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S +
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Fig. ' (;,1 D<tl11<tgcd ,,,lid (h) Rcprc'cnl<ttl\c volul11c c1cl11cnt (RYE). I.:) E'luiv<tknl dTc.:ti'c
l11cdium (EEMl.
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For simplicity. let us consider a plane time-harmonic wave propagating in the positive
x,-direction. Suppose that the input wave energy at the bottom side of the RVE is 5(1)1'
and the output wave energy at the top side is 5(1)0. then the energy balance provides

5(1)0 ~ 5<I)I-(P;C). (25)

where 5 denotes the surface of the bottom and the top side of the RVE. and (P;') is the
total energy loss due to the interaction of the incident wave with the defects within the RVE

,v

(P'() ~ L (P'f).
i= t

(26)

where the sum extends over all the defects in the RVE. In general. it is very difficult to
determine the total energy loss (P;') exactly. since multiple scattering processes take place.
To simplify our analysis. we adopt here the dilute approximation which neglects interaction
or multiple scattering effects between individual microdefects. In this case. the total energy
loss may be approximated by

(P,,/,) ~ N{}'}(I(x.w», (27)

in which {i'} is the average scattering cross-section with respect to defect sizc and orientation.
Substitution of (27) into (25) yields

(2X)

We go on to consider the homogeneous and line'lrly viscoelastic EEM (see Fig. 2c). Wave
propagation in this medium can be conveniently described by a complex wave number

, w
K(Ol) ~ _( ) +icx(Ol),

COl
(29)

where t(w) is the effective wave (phase) velocity and cx(w) is the attenuation coefficient.
With (29). a plane time-harmonic viscoelastic wave propagating in the positive xrdirection
can be expressed as

(30)

in which Uk(w) is an amplitude factor. With a positive IX. eqn (30) describes u plane time­
harmonic wave with diminishing amplitudes. The time-averaged intensity of this wave C.1n

be written as

which leads to

0(1)
-:)- ~ - 2::x(/(x. w».
eXl

Thus, the wave intensity at the top side of the EEM is

(31 )

(32)
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(33)

Since the output wave enagy at the top side of the originally damaged R VE should equal
that of the homogenized undamaged EEM. we obtain by equating (28) and (33):

(34)

where II = IV (dx,S) represents the number density of the defects (number of defects per
unit volume). Equation (34) implies that the attenuation coefficient 'Y. is simply determined
by the average scattering cross-section ::.} and the number density II of the defects, The
weakness of this formulation is clearly the neglect of the intaaction elfects between indi­
vidual defects. which become increasingly important as the defect density II increases,
Thus. the present formulation is only valid for dilutely distributed damages. and it is less
favourable for large damage concentrations. Interaction etli:cts can be taken into account
approximately by adopting the ditferential scheme developed by Beltzer (19XX. 19S9) or by
using the method applied by Zhang and Achenbach (1991), This will. however. make the
present analysis too cumbersome. and we will leave this work for future research. The
essential advantage of the present formulation is that we can determine the attenuation
coetlicient 'Y. by using a very simple formula (34). rather than have to n:sort to other
complicated methods.

Another p<lint to mention is that the cllntributillns from wave scattering by other
material microstructure. such as grain noundaries and second phase particles etc. arc
ignored in this analysis. This is less crucial if we assume that the wave length and the
characteristic dimensions of the derccts arc sullicienlly large compared to the characteristic
dimensillns of the material microstructure.

-I. !'IIASE VI:I.()(TIY AND (iR(){I!, VIU)('ITY

As mentioned in the previous section. the dfcctivc mediulll of the damaged solid is
thought of as statistically homogeneous and linearly viscoelastic. In this section. we further
assume that the dfcctive medium is causal and passive. These assumptions arc certainly
acceptablc from the physical point of view. As a consequence of the linearity. the causality
and the passivity of the dfcctive medium. the real part and the imaginary part of the
complex wave number are independent of one another. and they are related by Kramers
Kronig relations (e.g. Kronig. 1926: K ramers. 1927). These relations enable us to determine
the dfedive wave (phase) velocity. once the attenuation codlicient has been calculated from
eqn (34). Since detailed derivation and discussion of KramersKronig relations can be
found in many references (e.g. Beltzer. !I)SS: Golden and Graham. 11)88: Zhang and Gross.
(1)91 a). here we only summarize the essential results,

The linearity of the el1i:ctive medium ensures that the superposition principle applies.
The causality condition implies that the current overall average response of the dfective
medium is affected only by past and contemporaneous events. i.e.

(35)

where I/,/I{U -I) is the effective. re~i1-valued and time-dependent stiffness tensor. Conse­
quently. we have

(36)

where T,/(X. I) and i',,(X. I) arc the ensemble average of the stress and the strain components.
It should be noted here that the Fourier transforms of T,/(X. I). i·,,(X. I) and '/"k{(I). i.e.
fT,,(x. (!). I:,,(X. UJ) and £"k/«(I). still satisfy the equations of motion (2). the kinematic
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equation (3) and the constitutive equation (4) as in the linearly elastic case. However, the
material constants in these equations should be replaced by the corresponding effective
material constants, which are in general frequency dependent.

The passivity condition means physically that no energy can be created within the
effective medium, which may be stated mathematically as

The passivity condition (37) leads to

1m [K(w)] ~ 0, or ~ ~ 0,

(37)

(38)

which could be expected from the physical point of view that only with a positive IX will eqn
(30) describe a plane time-harmonic wave of diminishing amplitudes.

For a homogeneous medium obeying the linearity, the causality and the passivity
conditions as discussed before, and for a complex wave number K(w) defined by eqn (29),
it can be shown that the following relationships cxist bctween the real part and the imaginary
part of the complex wave number K(w) :

- - [ 2(~(0)(t)~ i" IX(O) ] - 1
c(w) = dO) 1+ ---- --,-,----, dO

7t \I 0'(0- - (I)')

~(w) = - 2(1}~ f' [ I -_I-J ~{l
7t II (~(O) (~(O) O~ -(J)~'

(39)

(40)

where the integrals should be understood ,IS ClUchy principal value integrals. These
relations were first established by Kramers (1927) and Kronig (1926) in the theory of optical
dispersion, and they arc often referred to as Kramers ·Kronig relations. They enable us to
calculate the phase velocity (~«(J) once the attenuation coeflicient IX(W) is known, or vice
versa. Also, to calculate the phase velocity by using eqn (39), knowledge of its static limit
(~(O) is required. This provides no difliculties since (~(O) is directly related to the static cffective
stiffness of the damaged solid, which can be found in many works known in the liter4lture.
For methods on finding the static effective stiffness of damaged solids see for instance
Hutchinson (19S7) and references given therein.

Another interesting quantity is the group velocity, denoted by [0., which differs in
general from the phase velocity (~ due to the presence of damages. The group velocity [og is
related to the phase velocity [0 by (e.g. Achenbach, (973)

(41 )

where k is the wave number of the incident wave. The importance of the group velocity is
due to the fact that it equals the energy propagation velocity, which has direct relevance to
experimental measurements by using receive transducers. It should be remarked here that
in a damaged solid the direction ofenergy propagation differs from that ofwave propagation
with the phase velocity. A detailed discussion on this subject is beyond the scope of this
paper, and for more detail see Beltzer (1988).

5. DYNAMIC EFFECTIVE STIFFNESS

Having determined the phase velocity (~«(JJ) and the attenuation coefficient IX(W), the
complex wave number K(w) can be subsequently computed via eqn (29). Then, the analysis
can be proceeded to determine the dynamic effective stiffness £;jk/(W). To this end, a direct
relationship between £;jklw) and K(w), or what is equivalent, between £;/*/(w), IX(W) and
('(w), is required. Such a relationship can be obtained by substituting the general form of
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eqn (30) into equation of motion (2), which yields the following complex Christoffel
equation:

(42)

where

(43)

is the symmetric and complex Christoffel stiffness tensor, and ftj are the components of the
wave propagation vector n. For non-trivial solutions Uk(w) it is necessary to have

(44)

By using the substitution

(45)

we obtain from (44) a cubic equ<ltion of the form

(46)

where

Explicit solutions to (46) can be obtained as

II
VI == A+B+ 3'

A+B J3 I,v, == - -- + -i(A-B)+-- 2 2 )'

A+B}3 II
V J = - --2"- --2 i(A - B) + "3'

in which

[ h ~2aJJln [b ~2aJJ1iJ
A== --+ -+- B= --- -+-

2 4 27' 2 4 27 '

Substitution of eqns (48)-(50) into (45) results in

(47)

(48)

(49)

(50)

(5\ )

(52)

(53)

Equation (53) provides a set of non-linear equations for the components of the dynamic
effective stiffness tensor E';kl(W), if the effective mass density p, the wave propagation vector
0, and the complex wave numbers K;(en, n) are known. It is assumed in this analysis that
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the effective mass density pis independent offrequency wand it can therefore be determined
by a static analysis. For general anisotropy. there are 21 independent stiffness components.
and we need hence at least 21 equations corresponding to 21 values of K;(w. n). For
transverse isotropy or orthotropy. the number of the independent stiffness components is
reduced to 9. and in this case at least 9 equations are required. Note here that it may not
be accurate enough. especially in experimental procedures. to have the same number of
equations and unknowns. Instead of this. the number of equations or measurements in
different directions should significantly exceed the number of the stiffness components to
be determined. This gives rise to an overdetermined system of non-linear equations which
can be reduced to an optimization problem (e.g. Castagnede and Sachse, 1988). Substantial
simplifications exist for isotropy, where we have

(54)

in which X(w) and J1(w) are the complex Lame's constants. and Land T designate the
longitudinal and the transverse waves, respectively. Using eqn (54), the dynamic effective
Lame's constants can be expressed as

X(w) = pw2[KC 2(W) - 2Ki 2(W»).

J1(w) =pw 2Ki 2(w).

By invoking the relation

cqns (55) and (56) can be written as

(55)

(56)

(57)

(58)

(59)

It should be remarked in passing that the complex dynamic effective stiffness tensor E'lkl(W)
also satisfies the Kramers-Kronig relations (e.g. Gross. 1953; Beltzer. 1988; Golden and
Graham. 1988). Since these relations are not directly used in this analysis. they are not
given here for the sake of brevity.

6. NUMERICAL EXAMPLE

As an example. we consider in this section a damaged solid whose damaged state is
caused by a distribution ofcompletely randomly oriented penny-shaped microcracks of the
same radius a. The originally undamaged solid is assumed to be homogeneous. isotropic
and linearly elastic. and it possesses the Lame's constants). and Ii as well as the wave
velocities CL and CT. respectively. The attenuation coefficient o:(w. n) is first calculated
numerically by using a boundary element method developed by Zhang and Gross (1991 b).
The average attenuation coefficient {cx(w)} is then obtained by taking the spherical average
of o:(w. n) with respect to the crack orientation. Since the damaged solid with randomly
oriented microcracks has a macroscopic isotropy. the wave propagation characteristics. i.e.
{:x}. cand c'. are independent of the direction ofwave incidence. All numerical calculations
have been carried out for a Poisson's ratio v = 1/3. For convenience. the normalized
attenuation coefficient ~ is introduced as
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where l; = fill' represents the crack density parameter.
The variation of the normalized attenuation coetficient ti with the dimensionless wave

number kill is shown in Fig. J. For incident plane time-harmonic L-wavesi first increases
rapidly with increasing kla. and after reaching a peak it then decreases. At high frequencies
(large values of kill) i tends to oscillate about a constant value. For incident plane time­
harmonic TV-waves. the variation ofi with kr (/ is somewhat dilTerenl. In this case. i
increases more or less monotonically with increasing k ,1I. and no distinct peak is noted. at
kast in the frequency range considered here.

Figures 4 and 5 show the dependence of the normalized phase velocity (\./<'1. and the
normalized group velocity (~UCI. on the dimensionless wave number k,lI. The corresponding
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results for c\/c, arc presented in Figs 6 and 7. In the low-frequency range. both c\/Cl. and
c~, /c, decrease with increasing kIll • •tnd after a dip is reached they then increase with further
increasing k, a. Figures 4 and 6 imply that the phase velocities c\ and c\ of a damaged solid
arc smaller than those of the undam'tged solid. due to the destructive interaction between
the incident waves and the dispersed microcracks. Comparison of Fig. 4 with Fig. 6 shows
that for fixed r. and kla. the reduction in c\ is generally larger than that in c~,. For small
values of k ,lI. the variations of C~U('l and C~~/CT with k rll are very similar to those of C\/Cl

and C~I.;c,. while for large values of k ,1I the variations of EUcl and c~~,/cr with krll arc
oscillatory. Depending on the combinations of I: and k rll. both the normal dispersion where
{~ > c~: (~ = L. T) and the anomalous dispersion where (~~ < (~~ could occur.

In Figs 8-11. numerical results arc presented for the normalized phase velocities C~l/Cl

and Er/cr. and for the normalized group velocities n./cl. and c~~/cr. versus the crack density

1.0 ~=:::::::::::::==------I
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~
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fig. X. c\ 1'1 versus 1:.
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parameter I;. The phase velocities cL/cL and crlcr decrease as I; increases. This tendency is
also noted for the group velocities fUCl and f~/cT at k r(1 = 0 and kra = I, whereas at
k,a = 2 and kra = 3 the group velocities fUeL and c~/cr first increase with increasing I;,

and after reaching their maximum they then decrease with further increasing I;.

The normalized dynamic effective Lame's constants XI i. and {IIII versus the dimen­
sionless wave number k r (1 are shown in Figs 12 and 13. The variations of the real part of
X/i. and {IIJI with k r(/ are similar to those of cLlcl and crlcr given in Figs 4 and 6. Departing
from zero. the imaginary part of XIi. and iiiJI decreases with increasing k ra until a local
minimum is reached. Thereafter. it shows an oscillatory behavior. and it then increases as
kT{/ further increases. (n all cases considered here. the imaginary part of XI i. and {Ilil is
always non-positive.
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Figures 14 and 15 show the effects of the crack density parameter /: on the normalized
dynamic effective Lame's constants XI). and iilp. For all values of t: considered, the real part
of XI). and iilp decreases as t: increases. On the other hand, the imaginary part of If}. and
{lip decreases first with increasing t: until it reaches its minimum. Thereafter, this behavior
turns over, and it increases with further increasing t:. The special case krll = 0 gives the
corresponding results for the normalized static effective Lame's constants J.(O)(). and ii(O)(p
where the imaginary part of II). and iilp is identically zero.

Finally, we mention here that the present approach can also be applied to damaged
solids with non-randomly oriented microcracks. where the microscopic behavior of the
damaged solids is antisotropic. Numerical results for both the attenuation coellicient and
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the phase velocity have been presented by Zhang and Gross (199Ia) who took the non­
random orientation of microcracks into account. It has been shown therein that for a non­
random orientation of microcracks and depending on the crack density parameter E. the
dimensionless wave number kra. and the direction of wave incidence n. the constructive
interaction between elastic waves and dispersed microcracks may dominate the process.
unlike for a completely random orientation of microcracks treated here where the destruc­
tive interaction prevails. Consequently. the etrective wave (phase) velocity of a damaged
solid with non-randl)lllly nrientcd microcracks can even he larger than that of the undam­
aged solid. Here. it should he mentioned again that the present approach neglects interaction
etrects among individual cracks. and it is valid only for small damage densities. Future
researeh should he direeted to take the interaction ell'ccts into account. at least approxi­
mately. and to estimate the range of /; in which the present approach is applicahle.
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