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WAVE PROPAGATION IN DAMAGED SOLIDS

D. Gross and CH. ZHANG?T
Institute of Mechanics, TH Darmstadt, Germany

Abstract—In this paper. a theoretical model is presented for investigating elastic wave propagation
in damaged solids. This model is suited for damaged solids with dilutely distributed defects, and it
may aid in the design of experimental configurations and in the proper interpretation of measured
data from ultrasonic non-destructive evaluation (NDE) for detecting and characterizing the damage
states of the solid. The problem of wave scattering by a single defect of arbitrary shape is first
formulated as a set of boundary integral equations. whose solution yields the unknown quantities
on the boundary of the defect. The scattering cross-section is then introduced as a measure of the
overall effects of the defect on the energy withdrawal from the incident wave. The dumaged solid is
approximated by an equivalent effective medium which is thought of as statistically homogeneous
and linearly viscoelastic. By introducing a complex wave number. neglecting interaction effects
among individual defects. and using encrgy considerations. a simple equation is obtained for
calculating the attenuation coeflicient from the average scattering cross-section and the numbger
density of the defects. Kramers-Kronig refations are subsequently applied to computce the effective
wave (phase) velocity from which the group velocity can be immediately calculated. A method for
finding the dynamic effective stiffness of the damaged solid from the attenuation coctficient and the
cffective wave velocity is proposed. Numerical results are presented for a damaged solid permeated
by a distribution of completely randomly oriented penny-shaped microcracks.

L INTRODUCTION

Wave propagation in a damaged solid, unlike in an ideally perfect solid, is generally
accompanied by attenuation and dispersion. Attenuation refers to the diminishing of wave
intensity or wave amplitude as a wave propagates through a damaged medium, while
dispersion refers to the shape distortion of a wave due to the frequency dependence of
the effective wave (phase) velocity. Both attenuation and phase velocity are measurable
quantitics, and the amount of change in the attenuation and phase velocity cun be correlated
to the level of dumage states. This feature has been advantageously exploited in ultrasonic
nondestructive evaluation (NDE) relying on wave propagation in solids, which provides
an ideal means for detecting and characterizing flaws in a damaged solid. Techniques
utilizing ultrasonic waves are especially appealing because of the direct connection between
the characteristics of the wave propagation and the damage states of a solid (e.g. Achenbach,
1990). This paper aims at providing a theoretical model which may aid in the design of
experimental configurations and in the proper interpretation of measured data.

There are many factors affecting wave attenuation and dispersion, such as spreading
of a wave beam, scattering, absorption duc to various mechanisms and mode conversion
resulting in partitioning of the encrgy among two or more wave modes each traveling at its
own velocity. The present analysis only considers the scattering effects of distributed
damages, since scattering is a common cause of attenuation of acoustic energy. During the
scattering processes, part of the incident wave energy is converted into the energy of
scattered waves. Conscquently, a perfectly clastic and damaged solid is seen by an incident
wave as an attenuative and dispersive medium, despite the conservative nature of the entire
system and its constitucnts. It is not easy to define precisely the terminology “damage™. In
this paper, “damage” is defined as a collection of micro-heterogeneitics whose presence
gives rise to changes of the overall materiad properties, such as stiffness, strength and
anisotropy. This definition may be misleading in the case of stiffer inhomogeneitics such as
in particle-reinforced composites. Here, a stiffening effect emerges which is desirable from
the engineering point of view. Even in this case, the inhomogeneities are regarded as
“damage”, since their presence will change the material properties and thus the wave
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propagation characteristics (attenuation and phase velocity). [n a real situation, scattering
by the material microstructure such as grain boundaries and second phase particles may
also have strong influence on wave attenuation and dispersion. In this analysis, this con-
tribution 1s ignored by assuming that the wave length and the characteristic dimensions
of the defects are sufficiently larger than the characteristic dimensions of the material
microstructure.

An extensive literature exists on wave propagation in multi-phase materials, especially
in particulate composites (e.g. Mal and Knopoff, 1967 ; McCoy. 1973 ; Bose and Mal, 1974 ;
Kuster and Toksoz, 1974; Kinra et al.. 1976 ; Varadan and Varadan, 1979 Sayers, 1980
Kinra and Anaud, 1982 ; Sayers and Smith, 1983 ; Datta et al.. 1988 : Ledbetter and Datta,
1986 : Sabina and Willis, 1988) and in voided materials (e.g. Varadan er al.. 1978 ; Sayers.
1981 Sayers and Smith, 1981; Gubernatis and Domany, 1984 ; Varadan et al., 1985;
Lewandowski, 1987a.b ; Stigh, 1987). It is not the goal of this paper to give a comprehensive
review on this subject. and for detail we refer to the above-mentioned works and references
cited therein. There are also several investigations on wave propagation in solids containing
cracks (e.g. Anderson et al., 1974; O'Connell and Budiansky, 1974 Piau, 1979, 1980:
Chatterjee er al.. 1980; Hudson, 1981, 1986 ; McCarthy and Carroll. 1984 Zhang and
Achenbach, 1991). Most of these investigations used either the formalism of Foldy (1949)
or the quasicrystalline approximation of Lax (1952). Also, most works were restricted to
Rayleigh regime where the wave length is considerably larger than the characteristic dimen-
sion of the defects, or to the diffusive regime for the opposite case. Few works have been
devoted to the stochastic regime where the wave length and the characteristic dimensions
of the defect are of the same order. As a consequence of the Rayleigh or low-frequency
approximation the phase velocity does not exhibit frequency dependence, and it does not
correctly describe the dispersion behavior of the wave, Kramers-Kronig relations have
been successfully applied by Beltzer and co-workers for studying wave attenuation and
dispersion in particle-reinforced composites, and the essential results have been reviewed
by Beltzer (1988, 1989). This causal approach has been recently extended to surface-crack
problems by Zhang and Achenbach (1990), to solids containing parallel anti-plane cracks
by Angel and Achenbach (1990), and to randomly and non-randomly cracked 2- or 3-D
solids by Zhang and Gross (1991a). The essential advantage of this approach is that it
puts no limitations on frequency, and it requires only a few parameters describing the
statistical distribution and orientation of the microdefects. In this paper, this approach is
further extended to damaged solids with dilutely distributed defects of arbitrary shapes.
The procedure for calculating the attenuation coeflicient and the phase velocity is essentially
the same as in our previous works (e.g. Zhang and Gross, 1991a). In the present analysis,
however, the group velocity is also computed, and a method for finding the dynamic
effective stiffness of the damaged solid is proposed. As an example, numerical results are
presented for a damaged solid permeated by a distribution of completely randomly oriented
penny-shaped microcracks.

2. SCATTERING CROSS-SECTION OF A SINGLE DEFECT

We consider an infinite, homogeneous, isotropic and linearly elastic solid containing
a volumetric defect of arbitrary shape as shown in Fig. la. The defect is assumed to be also
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Fig. 1. (a) Volumetric defect. (b) Crack.
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homogeneous. isotropic, and linearly elastic, and it occupies the domain ¥ inside a
sufficiently regular. bounded. and closed surface S. The material constants of the defect are
characterized by p°. 4% and u°, while p, 4 and u represent the corresponding material
constants of the matrix. Here. a defect is defined. though not precisely. as an inhomogeneity
whose material constants differ from those of the matrix, and whose presence will disturb
wave propagation in the matrix material. Depending on the relative stiffness of the defect
to that of the matrix, the defect can be used to model the fibers in a particle-reinforced
composite. the localized damaged zone in an otherwise perfect material, or a void. A crack
is also contained as a limit-case. Although interface flaws such as interface cracks, interface
debonding, interface sliding and interface layer (interphase) could be present in a real
situation (e.g. Aboudi, 1988 ; Datta et al., 1988), it is assumed here that a perfect bonding
between the matrix and the inhomogeneity prevails. Interface flaws can be easily taken into
account in the formulation. As an incident wave impinges on the defect, scattered waves
are generated. The total wave field in . can be written as a sum of the incident wave field
and the scattered wave field :

w=u"+u*, o, =o0]+0;. 3]

The incident wave field, «™" and ¢'", is defined as the wave field that would be present if the
defect were absent. The scattered wave field, «;° and o7}, is induced by the interaction of
the incident wave with the defect. The incident wave field is defined in the entire space
V = ¥+ V.., while the scattered wave field is only defined in V.. The solid is assumed to
be in time-harmonic motion, but the common term ¢ ™ is suppressed throughout the
analysis, where w is the angular frequency. Both the total wave field and the partial wave
ficlds satisfy the equations of motion

,,+pwiu =0, )
the linear kinematic equation
£ = g(lla./‘+u/.i)~ 3)
the Hooke's Law
Oy = Ligibiys 4)

and the boundary (continuity) conditions

u’(x) = u,(x), XxeS. )

oon(x) = a,n(x), Xe€S. 6

Here and in the following, the superscript 0 designates quantities in ¥y, and n, denotes the
components of the unit normal vector of S pointing into the interior of V. For isotropic
solids, E,,, can be written as

E;/kl = ;"sr/(skl + ”(‘slkls/l + 6115/k)' (7)

where §,; represents the Kronecker delta. Replacing the material constants of the matrix by
the corresponding material constants of the defect, similar equations like (2)—(4) can be
written for the displacement and the stress field in Vy, ie. u and g;). However, these
equations are not given here for the sake of brevity.

While the boundary conditions (5) and (6) are generally valid, some modifications
have to be made for certain limit-cases. For instance, the boundary conditions should read
for a rigid defect:
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(X} = const.. x£§: (%)
for a vacant void:
o,n{x) =0, x=5; 9)
and for a fluid-saturated void:
ug(xX) = u,(x), xs8, (10)
S =£Ax). fUX) =f(x) =0, xeS. (1

In eqns (10) and {1 1). # and ¢ denote the normal and the tangential components of the
displacements and the tractions. For a traction-free crack. the boundary conditions are

a,n(x) =0, xed. (12)

where 4 = 47 + 4~ denotes the surtuce of the crack {see Fig. 1b). In this analysis, the
incident wave ficld is assumed to be known a priori. and the scattered wave field has to be
determined. which satisfies the radiation conditions at infinity. By using the elastodynamic
representation theorem, the wave ficld in 1, and the scuttered wave field in 7, can be
expressed as

wx) = »»J [ohe ¥ (y) —ui(x oy)al(y)ln, dS. xe by, ARS!
.

w(x) = J ot y) —ui(x:x)a, (), dS, xel,, (14)
AY

where x and y denote the position vectors of the observation point and the source point,
and wo, ape and uy, ob; represent the displacement and the stress Green's functions of the
defect and the matrix, respectively.

Using eqns (13) and {14), taking the himit x — S, and considering the boundary
conditions (5) and {6), a system of coupled boundary integral equations (BIEs) can be
obtained as

L (x) = ~.[ laye(x ¥ uy) —u(xy)a, (W), 45, xeS, (135
)
L (x) —uif(x) = J [oo (X Y y) —uS(x y)o, (Vn, dS, xeS§, {16)
Y

where the integrals are understood as Cauchy principal value integrals.

The boundary integral equations {15) and (16) are valid for arbitrarily shaped defects.
Implications arise when the defect takes the form of a cruck with vanishing thickness. In
this case, the usual displacement BIE formulation degenerates, and it is convenient to use
the traction BIE formulation. For a three-dimensional crack of arbitrary shape, a non-
hypersingular BIE formulation leads to the following traction BIEs (c.g. Zhang and Gross,
1991b)

J7x) = E n (x) {smsﬂ,f oo (X ) A, (yin, — per’ J ui (X y)Au (y)n, dS}. xeAd".
4° i

(17
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where ¢,,, is the permutation tensor, and Ay, are the crack opening displacements. Also
here, the integrals are understood as Cauchy principal value integrals.

The boundary integral equations (15)—(17) can be solved numerically by adopting the
boundary element method (BEM). Special care must be taken to account for the singularities
arising in the Green's functions. For crack problems, additional singularities occur at the
tips of the crack which should be modeled properly. Once the quantities on the boundary
of the defect have been calculated by solving eqns (15) and (16) (or eqn (17)), the dis-
placement and the stress field at any internal point can be determined by using the respective
representation formulas for these quantities.

In this analysis, the incident wave is taken to be either a plane time-harmonic longi-
tudinal wave (L-wave) of the form

ui"(x. {) = U,l{(’ﬁk”’"’—m”, (18)
or a plane time-harmonic transverse wave (TV-wave) of the form
in . T jithkyxn, ~—wl)
llk(x,I)—-Uk(’ A » (lg)

where n, are the components of the wave propagation vector n, Ut and U] are the
amplitudes, and & and &k are the wave numbers of the incident L- and TV-waves, respec-
tively. The presence of a defect gives rise to a perturbation of the intensity of the incident
wave, since a part of the energy of the incident wave is converted into the energy of scattered
waves. To describe the effects of the defect on the energy withdrawal from the incident
wave, the scattering cross section y is introduced as

Py

Yo

K 0

where (%) represents the time-averaged energy flow of scattered waves over a period
T = 2n/w, and {I) denotes the time-averaged intensity of the incident wave. For an incident
plane time-harmonic L-wave defined by eqn (18) the time-averaged wave intensity is given
by

3
Iy = 4;;{’: ULtuts, @n

while for an incident plane time-harmonic TV-wave of the form (19) (/) is determined by

3
=P Tty
I = % U U™, 22)

where asterisk stands for the complex conjugate. The time-averaged energy flow of the
scattered waves (P*) can be expressed as

(P> = ~1Re [iwf o (ur)*n, dS]. (23)
A
If the defect is a crack, eqn (23) can be recast into the following form :
(P*y =|Re [iw J‘ o Autn, dS]' (24)
4

The time-averaged energy flow {(P*) describes the energy scattered in all directions and,
thus, lost by an incident wave at the expense of its interaction with the crack.
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The scattering cross-section 7 1s of particular importance to the present analysis, and
it is directly related to the attenuation coetficient, as will be shown in the following section.

3. DISTRIBUTED DEFECTS AND ATTENUATION COEFFICIENT

We consider now a distribution of microdefects embedded in a homogeneous., isotropic
and linearly elastic solid, as shown in Fig. 2a. Depending on the statistical distribution and
orientation of the dispersed microdefects, the overall behavior of the damaged solid may
exhtbit macroscopic anisotropy or isotropy. Wave propagation in such a heterogeneous
medium is very complex. and it is impractical, often also impossible. to study the local
events neur individual defects. Often. it suffices to describe the overall average response of
the material. One approach for doing this is the so-called ettective medium approach, which
has been extensively used in the literature. Here, we will adopt this approach for analyzing
the dynamic behavior of the damaged solid. To be more specific, let us consider a rep-
resentative volume element (RVE) as shown in Fig. 2b. which is large enough compared
to the characteristic dimensions of the material microstructure including the microdefects.
but small enough compared to the characteristic dimensions of the damaged solid. Wave
propagation in this heterogencous RVE involves wave scattering due to the presence of the
defects, which withdraws the energy of the incident wave. Consequently, the wave intensity
decreases or attenuates, though the matrix and the detects are perfectly elastic and do not
dissipate energy. Also, the presence of the damage will change the effective wave velocity,
which is now frequency dependent. These two phenomena, referred to as wave atienuation
and dispersion, are very simidar to those of wave propagation tn o homogeneous and lincarly
viscoclastic medium, Because ol this similarity, it s intuttive to replace the originally
heterogencous RVE by an equivalent cffective medium (EEM) which s thought of as
homogencous and lincarly viscoclastic (see Fig. 2¢). This procedure, often termed “homo-
genization™ technique, relies on the assumption that both the originally damaged RVE and
the undamaged EEM should have, at least approximately, the same response under the
same dynamic loading conditions. In principle, we can first determine the dynamic effective
matterial constants, and then calealate the corresponding wave propagation characteristics
(attenuation and phase veloaity). Here, we follow an opposite way which appears 1o be
more convenient as will be shown in the following.
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Fig. 2. (a) Damaged solid. (b) Representative volume element (RVE). () Equivalent effective
medium (EEM).
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For simplicity. let us consider a plane time-harmonic wave propagating in the positive
x,-direction. Suppose that the input wave energy at the bottom side of the RVE is S{/},.
and the output wave energy at the top side is S{/)o. then the energy balance provides

S{o = S =P, (25)

where S denotes the surface of the bottom and the top side of the RVE. and (2} is the
total energy loss due to the interaction of the incident wave with the defects within the RVE

Py = T (PR, (26)

i=1

where the sum extends over all the defects in the RVE. In general. it is very difficult to
determine the total energy loss {P;¢) exactly, since multiple scattering processes take place.
To simplify our analysis, we adopt here the dilute approximation which neglects interaction
or multiple scattering effects between individual microdefects. In this case. the total energy
loss may be approximated by

CPEY = N{viKI(x. w)), (27

in which {7y} is the average scattering cross-section with respect to defect size and orientation.
Substitution of (27} into (25) yiclds

N
Do =KD =5 wilx w)). (28)

We go on to consider the homogencous and lincarly viscoelastic EEM (see Fig. 2¢). Wawve
propagation in this medium can be conveniently described by a complex wave number

K(w) = Z(%i +in(w), (29)

where ¢(w) is the effective wave (phase) velocity and a{w) is the attenuation coefficient.
With (29), a plane time-harmonic viscoelastic wave propagating in the positive x,-direction
can be expressed as

HQ(X, w) . Uk(w)f'm"’"‘ -] Uk(w)e"“"c"‘"‘“‘“’{"”“"l, (30)
in which U, (w) is an amplitude factor. With a positive a, eqn (30) describes a plane time-

harmonic wave with diminishing amplitudes. The time-averaged intensity of this wave can
be written as

(x,w)> = (x, w)de™ 3, (3h
which leads to
é
L_f‘” = —2ai(x.w)). (32)

Thus, the wave intensity at the top side of the EEM is
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‘(I
x.w)do = X ) + (f‘v ? dy: = = 2x{ix.w)) dx.. (33)

Since the output wave energy at the top side of the originally dumaged RVE should equal
that of the homogenized undamaged EEM. we obtain by equating (28) and (33):

x=lnly), (34

where n = NV (dx.S) represents the number density of the defects (number of defects per
unit volume). Equation (34) imples that the attenuation coethicient x is simply determined
by the average scattering cross-section |7} and the number density » of the defects. The
weakness of this formulation is clearly the neglect of the interaction effects between indi-
vidual defects. which become increasingly important as the defect density # increases.
Thus. the present formulation is only valid for dilutely distributed damages. and it is less
favourable for large damage concentrations. Interaction etfects can be taken into account
approximately by adopting the differential scheme developed by Beltzer (1988, 1989) or by
using the method applied by Zhang and Achenbach (1991). This will, however, make the
present analysis too cumbersome, and we will leave this work for tuture rescarch. The
essential advantage of the present formulation s that we can determine the attenuation
cocflicient x by using a very simple formula (34), rather than have to resort to other
comphcated methods.

Another point to mention is that the contributions from wave scattering by other
material microstructure, such as grain boundaries and sccond phase particles cte. arc
ignored in this analysis. This is less crucial it we assume that the wave length and the
characteristic dimensions of the defects are sufliciently large compared to the characteristic
dimensions of the material microstructure.

4. PHASE VELOCITY AND GROUP VELOCITY

As mentioned in the previous section, the effective medium of the damaged solid is
thought of as statistically homogencous and lincarly viscoelastic. In this scction, we further
assume that the etfective medium is causal and passive. These assumptions are certainly
acceptable from the physical point of view. As a conscquence of the lincarity, the causality
and the passivity ol the effective medium, the real part and the imaginary part of the
complex wave number are independent of one another, and they are related by Kramers-
Kronig relations (c.g. Kronig, 1926 : Krimers, 1927). These relations enable us to determine
the effective wave (phase) velocity, once the attenuation coetlicient has been calculated from
eqn (34). Since detailed derivation and discussion of Kramers -Kronig relations can be
found in many references (e.g. Beltzer, 1988 2 Golden and Graham, 1988 ; Zhang and Gross,
19914), here we only summarize the essential results.

The linearity of the effective medium ensures that the superposition principle applies.
The causality condition implies that the current overall average response of the effective
medium is affected only by past and contemporancous events. i.e.

Hoat—=1) =0, for <1, (35)
where 1,.,(1 = 1) is the effective, real-valued and time-dependent stiffness tensor. Conse-
quently, we have

X 1) = J ot (= D) 7e(x0 1) di. (36)

where 7, (x. 1) and 7,,(x. 1) arc the ensemble average of the stress and the strain components.
It should be noted here that the Fourier transforms of t,,(x. 1), v, (x. 1) and 7,.,(0. te.
a,(x. m). &,(x. ) and E, (o). still satisty the equations of motion (2). the kinematic
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equation (3) and the constitutive equation (4) as in the linearly elastic case. However, the
material constants in these equations should be replaced by the corresponding effective
material constants, which are in general frequency dependent.

The passivity condition means physically that no energy can be created within the
effective medium. which may be stated mathematically as

[m (E-.I/I([EITEI(I) s 0 (37)
The passivity condition (37) leads to

Im [K(w)] £0. or «

\Y

0. (38)

which could be expected from the physical point of view that only with a positive « will eqn
(30) describe a plane time-harmonic wave of diminishing amplitudes.

For a homogeneous medium obeying the linearity, the causality and the passivity
conditions as discussed before, and for a complex wave number K(w) defined by eqn (29),
it can be shown that the following relationships exist between the real part and the imaginary
part of the complex wave number K(w):

b I: x 1
g((,,)=5(0,[|+%g(gﬂﬁ 5:-({;‘?;’;:—)d9] : (39)
_ w1 1] s “
(== ) Lao " aofar- o (40)

where the integrals should be understood as Cauchy principal value integrals. These
relations were first established by Kramers (1927) and Kronig (1926) in the theory of optical
dispersion, and they are often referred to as Kramers -Kronig relations. They enable us to
calculate the phase velocity é(w) once the attenuation coeflicient a(w) is known, or vice
versa. Also, to calculate the phase velocity by using eqn (39), knowledge of its static limit
&(0) is required. This provides no difliculties since ¢(0) is directly related to the static effective
stiffness of the damaged solid, which can be found in many works known in the literature.
For methods on finding the static effective stiffness of damaged solids see for instance
Hutchinson (1987) and references given therein,

Another interesting quantity is the group velocity, denoted by &, which differs in
general from the phase velocity ¢ due to the presence of damages. The group velocity ¢ is
related to the phase velocity ¢ by (e.g. Achenbach, 1973)

de

br S .
I3 —c+/xdk.

(41)

where k is the wave number of the incident wave. The importance of the group velocity is
due to the fact that it equals the energy propagation velocity, which has direct relevance to
experimental measurements by using receive transducers. It should be remarked here that
in a damaged solid the direction of energy propagation differs from that of wave propagation
with the phase velocity. A detailed discussion on this subject is beyond the scope of this
paper, and for more detail see Beltzer (1988).

5. DYNAMIC EFFECTIVE STIFFNESS

Having determined the phase velocity ¢(w) and the attenuation coefficient a(w), the
complex wave number K(w) can be subsequently computed via eqn (29). Then, the analysis
can be proceeded to determine the dynamic effective stiffness E,,k,(w). To this end, a direct
relationship between E',-,k,(w) and K(w). or what is equivalent, between £,,,(w). a(w) and
¢(w), is required. Such a relationship can be obtained by substituting the general form of
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eqn (30) into equation of motion (2), which yields the following complex Christoffel
gquation :

A

[r,k (@) — f@; é,«k} Uelw) = 0, (42)

where
rzk (w) = E:jk{(w)njni {43)

is the symmetric and complex Christoffel stiffness tensor, and n; are the components of the
wave propagation vector n. For non-trivial solutions U, (w) it is necessary to have

SN ) @9
K
By using the substitution
pw’
V 2 e
(w) Kia) (45)

we obtain from (44) a cubic equation of the form

V-1 Wi+ V-1, =0, (46)

[| = r,,, 12 = %(r”r”—'r‘jr,‘/). 13 = d(:t (r“). (47)

Explicit solutions to (46} can be obtained as

{

V,=A+B+ —31 (48)

A+ B \/5 5

Viz = —— + X2 {(A-B)+ =
3 5 + 5 (A—-B)+ 3 (49)

A+ B \/3 I

Vis = e = Y2 (A= B)+
3 > 3 i{(A-B)+ 3 (50)

in which
b bz a} 13 b bz al 13

A:[—i+ 71_+§7] . Bm[-«—i-— 5l (5D
a=1[,-V}, b=~ $QI}-911,+271]). (52)

Substitution of eqns (48)—(50) into (45) results in
KX (w,n) = pw?V ' i=1,2,3. (53)
Equation (53) provides a set of non-linear equations for the components of the dynamic

effective stiffness tensor £, (w). if the effective mass density §, the wave propagation vector
n, and the complex wave numbers K;(w, n} are known. It is assumed in this analysis that



Wave propagation in damaged solids 1773

the effective mass density g is independent of frequency w and it can therefore be determined
by a static analysis. For general anisotropy, there are 21 independent stiffness components,
and we need hence at least 21 equations corresponding to 2! values of K(w.n). For
transverse isotropy or orthotropy, the number of the independent stiffness components is
reduced to 9, and in this case at least 9 equations are required. Note here that it may not
be accurate enough, especially in experimental procedures, to have the same number of
equations and unknowns. Instead of this, the number of equations or measurements in
different directions should significantly exceed the number of the stifiness components to
be determined. This gives rise to an overdetermined system of non-linear equations which
can be reduced to an optimization problem (¢.g. Castagnede and Sachse, 1988). Substantial
simplifications exist for isotropy. where we have

Ki(w) = po’[l{w)+2i(w)] ', Ki) = po’i™ " (w). (54)
in which A(w) and f(w) are the complex Lamé's constants. and L and T designate the

longitudinal and the transverse waves, respectively. Using eqn (54). the dynamic effective
Lameé’s constants can be expressed as

Hw) = pu’[K{ (0) - 2K (0)), (55)
fi(w) = pwlK7 (o). (56)
By invoking the relation
Ko=2 via,, Ke=2 ving (57)
L Cr

cqns (55) and (56) can be written as

Iw) = jo’ [(ﬁ‘i +iaL)"—z (_3 +:‘a4r)"]. (58)
L Cr
fw) = o (‘” +:a~r)‘ } (59)
CT

It should be remarked in passing that the complex dynamic effective stiffness tensor £, ,,(w)
also satisfies the Kramers~Kronig relations (e.g. Gross, 1953 ; Beltzer, 1988 ; Golden and
Graham, 1988). Since these relations are not directly used in this analysis, they are not
given here for the sake of brevity.

6. NUMERICAL EXAMPLE

As an example, we consider in this section a damaged solid whose damaged state is
caused by a distribution of completely randomly oriented penny-shaped microcracks of the
same radius a. The originally undamaged solid is assumed to be homogeneous, isotropic
and linearly elastic, and it possesses the Lamé’s constants A and y as well as the wave
velocities ¢, and ¢y, respectively. The attenuation coefficient «(w, n) is first calculated
numerically by using a boundary element method developed by Zhang and Gross (1991b).
The average attenuation coefficient {a(w)} is then obtained by taking the spherical average
of a(w, n) with respect to the crack orientation. Since the damaged solid with randomly
oriented microcracks has a macroscopic isotropy, the wave propagation characteristics, i.e.
{a}. and ¢*, are independent of the direction of wave incidence. All numerical calculations
have been carried out for a Poisson's ratio v = 1/3. For convenience, the normalized
attenuation coefficient 4 is introduced as
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2u
= —1{a, (60)
ne

where & = na' represents the crack density parameter.

The variation of the normalized attenuation coeflicient 4 with the dimensionless wave
number ke is shown in Fig. 3. For incident plane time-harmonic L-waves 4 first increases
rapidly with increasing &k ra, and after reaching a peak it then decreases. At high {frequencies
(large values of kra) % tends to oscillate about a constant value. For incident plane time-
harmonic TV-waves, the variation of f with Ara is somewhat different. In this case, %
increases more or less monotonically with increasing & «, and no distinct peak is noted, at
least in the frequency range considered here.

Figures 4 and 5 show the dependence of the normalized phase velocity ¢ /e and the
normalized group velocity ¢t /e on the dimensionless wave number kya. The corresponding

1.05

kra

Fig. 5. é{/c, versus kya.
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results for ¢ /ey are presented in Figs 6 and 7. In the low-frequency range, both ¢ /¢ and
¢y /ey decrease with increasing & o, and after a dip is reached they then increase with further
increasing & pa. Figures 4 and 6 imply that the phase velocitics & and ¢, of a damaged solid
are smaller than those of the undamaged solid, due to the destructive interaction between
the incident waves and the dispersed microcracks. Comparison of Fig. 4 with Fig. 6 shows
that for fixed ¢ and &a. the reduction in ¢ is generally larger than that in &, For small
values of & «, the variations of &} /¢, and ¢§/ey with kpa are very similar to those of & /¢,
and épfep. while for large values of &« the variations of éf /e, and &%/ce with kva are
oscillatory. Depending on the combinations of ¢ and & ra, both the normal dispersion where
& > ¢ (& =L, T) and the anomalous dispersion where ¢ < ¢ could occur.

In Figs 8-11, numerical results are presented for the normalized phase velocities & /e,
and ¢y/cr. and for the normalized group velocities & /¢, and ¢/cy, versus the crack density
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parameter £. The phase velocities & /e and &¢/cy decrease as ¢ increases, This tendencey s
also noted for the group velocitics €1/, and é%/er at Ava = 0 and kra = 1, whereas at
kiya =2 and ka = 3 the group velocities ¢} /¢, and &}/cp first increase with increasing &,
and after rcaching their maximum they then decrease with further increasing .

The normalized dynamic effective Lamé's constants £/ and fi/u versus the dimen-
sionless wave number kg are shown in Figs 12 and 13. The variations of the real part of
£/ and fi/u with ka are similar to those of ¢ /c, and &/cy given in Figs 4 and 6. Departing
from zero, the imaginary part of £/4 and ji/u decreases with increasing kra until a local
minimum is reached. Thereafter, it shows an oscillatory behavior, and it then increases as
kra further increases. In all cases considered here. the imaginary part of £/4 and /u is

always non-positive.
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&
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Figures 14 and |5 show the effects of the crack density parameter & on the normalized
dynamic effective Lamé’s constants 4/4 and ji/u. For all values of ¢ considered, the real part
of Z/4 and ji/u decreases as ¢ increases. On the other hand, the imaginary part of 4/2 and
fi/u decreases first with increasing ¢ until it reaches its minimum. Thercafter, this behavior
turns over, and it increases with further increasing £. The special case kra = 0 gives the
corresponding results for the normalized static effective Lamé’s constants £(0)/2 and j(0)/u
where the imaginary part of /1 and ji/u is identically zero.

Finally, we mention here that the present approach can also be applied to damaged
solids with non-randomly oriented microcracks, where the microscopic behavior of the
damaged solids is antisotropic. Numerical results for both the attenuation coeflicient and
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the phase velocity have been presented by Zhang and Gross (1991a) who took the non-
random orientation of microcracks into account. It has been shown therein that for a non-
random orientation of microcracks and depending on the crack density parameter ¢, the
dimensionless wave number ka. and the direction of wave incidence n, the constructive
interaction between clastic waves and dispersed microcracks may dominate the process,
unlike for a completely random orientation of microcracks treated here where the destruc-
tive interaction prevails. Consequently. the effective wave (phase) velocity of a damaged
solid with non-randomly oriented microcracks can even be farger than that of the undam-
aged solid. Here, itshould be mentioned again that the present approach neglects interaction
effects among individual cracks, and it is valid only for small damage densities. Future
rescarch should be direeted to tuke the interaction effects into account, at least approxi-
mately, and to estimate the range of ¢ in which the present approach is apphicable.
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